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Multifractal modeling of soil microtopography with multiple transects data
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A B S T R A C T

Soil complexity and environmental heterogeneity may be viewed as a consequence of deterministic

chaotic dynamics and therefore highly irregular patterns with so-called multifractal behavior should be

common. This approach introduces a distinct viewpoint as compared with fractal models for soil surface

roughness based on fractional Brownian motion. It suggests that it would be useful to move away from

the fractal geometry of sets towards the multifractal description of singular probability measures, as well

as going beyond second order statistics. The goal of this study was to investigate the multifractal

behavior of soil microtopography measured on transects. On rectangular 200 cm � 40 cm plots, point

elevation values were obtained and soil microtopography was examined as two-dimensional probability

measure. A well-defined multifractal behavior similar to multinomial measures was observed in all

cases. The multinomial measures were simulated with a multifractal spectrum close to the spectra of the

experimental plots to obtain the synthetic multifractals to evaluate the level of uncertainty in the

estimates of the multifractal spectrum of natural roughness as a consequence of the transect rather than

grid sampling. We found that the transect separation used to collect the experimental data in this work

generates a realistic multifractal spectrum but it cannot precisely define its tails that correspond to

asymptotic values of the singularity exponents.

� 2009 Elsevier B.V. All rights reserved.
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1. Introduction

Soil microtopography is affected by a multitude of processes
such as detachment and transport of soil particles by surface
runoff, infiltration, depression storage, wind erosion, gas
exchange, evaporation or heat flux (Huang, 1998). In turn, some
of these processes alter microtopography due to erosion and
deposition, and changes in soil microrelief are also indicative of
the extent of these processes. In agricultural soils, microtopo-
graphy is altered by tillage, livestock trampling, consolidation,
and erosion and deposition from rain and wind. Cycles of
freezing/thawing and wetting/drying also change soil surface
microrelief.

A substantial effort has been devoted to the quantification and
simulation of soil microtopography to enhance the understanding
of the soil processes that are affected by soil surface roughness,
and the extent to which these processes transform soil micro-
relief. Statistical indicators were developed to characterize soil
roughness at fine scales as early as the late 1950’s—see for
example Huang (1998) for a more detailed account. These
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indicators have been perceived as important but not exhaustive
(Huang and Bradford, 1990, 1992). For example, they cannot
account for some important features of soil surface that should be
viewed in the spatial context. Later, geostatistical tools have been
applied which consider the elevation of the soil surface as a
realization of a stochastic stable process. The soil surface
roughness has been treated as the realization of independent
random variable with a covariance which depends only on the
spatial separation and not on the actual position. Such variables
are called second order stationary or weak stationary stochastic
processes. The variograms showing the fractal behavior of
microtopography and fractional Brownian motion were used to
capture soil surface complexity (Huang, 1998) which was
parameterized using the fractal dimension and the so-called
crossover length even if the part of the variogram corresponding
to large lags could not be accurately described with power laws
(Huang, 1998).

The scaling properties shown by many geophysical elements
can be understood as the by-product of chaotic nonlinear
dynamics. In the context of Earth sciences, the complexity and
heterogeneity of soil systems widely observed has been recently
cast within the framework of the theory of complex systems
(Culling, 1988; Phillips, 1993, 1999; Lovejoy and Schertzer, 2007).
Using this theory, soil complexity and environmental hetero-
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geneity may be viewed as a consequence of the deterministic
chaotic dynamics; and highly irregular patterns with so-called
multifractal behavior are likely to be found (Beck and Schlögl,
1995; Lovejoy and Schertzer, 1998, 2007). This point of view
suggests a move away from the fractal geometry of sets towards
the multifractal description of singular probability measures, and
also goes beyond second order statistics.

Recently, it has been reported (Gagnon et al., 2006; Lovejoy and
Schertzer, 2007) that topography exhibits multifractal behavior
over a wide range of scales from 1 to 107 m and it has been
suggested that this is a consequence of the strong coupling of
nonlinear geophysical processes which produce a nonlinear
chaotic dynamics. Presumably, we should encounter the same
dynamics at finer scales. In this context, the goal of this study was
to investigate the multifractal behavior of soil microtopography.
For this, point elevation values were examined as a two-
dimensional probability measure to determine the presence of
multifractal patterns. We also investigate the transect sampling
impact on multifractal parameters.

2. Theory

The multifractal analysis of a probability distribution or mass
distribution in a rectangular region of the plane requires a set of
different grids with rectangular cells. A common choice for the
grids is to consider dyadic downscaling (Evertsz and Mandelbrot,
1992; Kravchenko et al., 1999). This may be achieved by successive
dyadic partitioning of each side of the rectangular region support
of the measure with a factor e = 2�k (k = 1, 2, 3,. . .). At each size
scale e, a number N(e) = 22k of cells are considered and their
respective measures mi(e) are found from data. Presumably, data
should be normalized – i.e.

PNðeÞ
i¼1 miðeÞ ¼ 1 – in order to have a

probability measure.
The number ai(e) = log mi(e)/log e is the singularity or Hölder

exponent of the i-th cell of size e or the coarse singularity exponent.
We will call it ‘singularity exponent’ for short. This exponent may
be interpreted as a crowding index or a degree of concentration of
m: the greater this value, the smaller the concentration of the
measure will be, and vice versa. It is, in fact, the logarithmic density
of the i-th cell of the partition of characteristic size e. Typically,
coarse singularity exponents of multifractal distributions show a
great variability. Moreover, in the limit (e! 0 they become a
continuum filling up a whole interval [amin, amax]. To characterize
the different scalings of the measure, the set Ia of points with
singularity exponent equal to a is considered and its Hausdorff
dimension dimHIa computed. The function f(a) = dimHIa is called
the singularity spectrum of the distribution m and quantifies in
geometrical and statistical sense the singular behavior of the
measure. It gives the ‘‘sizes’’ of the sets where singularity
exponents are located and it is related to the probability
distribution of these exponents (see Evertsz and Mandelbrot
(1992) for details).

Following Chhabra and Jensen (1989), the singularity spectrum
may be computed through a set of real numbers q by

aðqÞ/
PNðeÞ

i¼1 miðq; eÞlog miðeÞ
log e (1)

and

f ðaðqÞÞ/
PNðeÞ

i¼1 miðq; eÞlog miðq; eÞ
log e (2)

where the quantities mi(q,e) are defined by

miðq; eÞ ¼
miðeÞ

qPNðeÞ
i¼1 miðeÞ

q
: (3)
Here the symbol ‘‘/’’ means scaling or asymptotic behavior as
e! 0 and the summations run over the cells with nonzero mass
(Evertsz and Mandelbrot, 1992).

Expression (3) defines a family of measures parameterized by q.
They can be viewed as different distortions of the original measure
as parameter q varies. On one side, the larger the parameter q the
more heavily large concentrations are weighted, then, for large q’s
the highest mI’s dominate the sum. On the other side, the lowest
(nonzero) mI’s yield the dominating contributions for small q’s.
Finally, we consider the limit measures m(q). They are obtained
from Expression (3) as the linear size of the partition e approaches
zero. Hence parameter q provides a scanning tool to scrutinize the
singularity regions of the measure. For q� 1, m(q) amplifies the
regions where m has a high degree of concentration while, for
q��1, the regions with a small degree of concentration are
magnified. Let us note that mi(e) = mi(1,e) and the measure m itself
is replicated. When q = 0, mi(0,e) is just the uniform measure over
the set of cells of the partition of characteristic size e with nonzero
mass.

The procedure of Chhabra and Jensen (1989) allows the
labeling of the singularity exponents as the parameter q. The
exponents become a non-increasing function of q. Large (small)
values of the parameter q correspond to high (low) degrees of
concentration of the measure. This is a natural result: a(q) is
obtained as an average of the singularity exponents with respect
to the probability measure m(q) that magnifies the denser (more
rarefied) regions for large (small) values of q. In particular, a(0)
is the average of the singularity exponents weighted by the
uniform distribution over the support of m, so that the sets
where the measure is most concentrated are weighted in a
similar way to those where it is most rarefied; however, the
average is weighted by the probability measure itself in the case
of a(1).

This procedure allows also to interpret the fractal dimension
f(a(q))as the entropy dimension of the associated measure m(q). In
fact, the numerator on the right hand side of Expression (2) is
simply the Shannon entropy with respect to a mesh of linear size e
of the measure m(q) (Chhabra and Jensen, 1989). So, f(a(q))
quantifies the degree of heterogeneity of the distribution m(q) by
measuring the way its Shannon entropy scales as the linear size of
the mesh goes to zero.

Therefore, the singularity spectrum is obtained as a curve
parameterized by q. It is the set of points with Cartesian
coordinates (a(q),f(a(q))). Comparing Expressions (1) and (2) for
q = 1 one obtains the equality f(a(1)) = a(1). This parameter is the
entropy dimension DI of the distribution m. Considering the
above reasoning for the case q = 1, DI quantifies the degree of
heterogeneity of the distribution m itself by measuring the way
its Shannon entropy scales as the linear size of the mesh shrinks
and it may also be considered as the average of logarithmic
densities or concentrations of the multifractal distribution
weighted by m. It suggests that DI may be viewed as the
expected value of the different concentrations when the
distribution itself is taken into account and it also determines
the geometrical size of the set where the ‘‘main part’’ of the
distribution concentrates.

One method for generating synthetic multifractal measures is
to use the techniques developed by Hutchinson (1981) – see also
Peitgen et al. (1992) for a practical approach – based on the
notion of iterated function systems. A two-dimensional multi-
fractal distribution on the plane over the unit square can be
obtained as follows. Let us consider four weights pi such thatP4

i¼1 pi ¼ 1 and let us iterate the process depicted in Fig. 1.
When this process is extended to its limit, the resulting
mathematical object is a two-dimension multinomial prob-
ability measure or mass distribution with four weights that is



Fig. 1. The iterated process for generating a tetranomial multifractal measure in the

unit square of the plate with weights pi with i = 1, 2, 3, 4.

Fig. 2. Graph representing the microrelief of one plot corresponding to the matrix of

point elevation values after slope removal.

Fig. 3. Scalings of sample A soil microrelief for selected values of parameter q.

The graph on the top shows the regression lines to estimate the singularity

exponents a and the graph on the bottom the regression lines to estimate the

fractal dimensions f(a).
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self-similar and multifractal. For obvious reasons we will call
these multifractal measures tetranomials. It is possible to use
close expressions to evaluate their singularity spectrum.
Specifically, it can be shown (Evertsz and Mandelbrot, 1992)
that

aðqÞ ¼ �
X4

i¼1

pq
iP4

j¼1
pq

j

 !
log2 pi (4)

and

f ðaðqÞÞ ¼ �
X4

i¼1

pq
iP4

j¼1
pq

j

 !
log2

pq
iP4

j¼1
pq

j

 !
: (5)
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These formulae imply that

f ðað1ÞÞ ¼ að1Þ ¼ �
X4

i¼1

pi log2 pi; (6)

að0Þ ¼ �1

4

X4

i¼1

log2 pi; f ðað0ÞÞ ¼ 2 (7)

að�1Þ ¼max
i
�log2 pif g; aðþ1Þ ¼min

i
�log2 pif g (8)

Therefore, one way of simulating a multifractal measure with a
given multifractal behavior based on its singularity spectrum is to
use the above expressions to get a tetranomial multifractal with
the same multifractal structure—i.e. both, the original measures
and the simulated one should have close multifractal spectra and,
as a consequence, values of the above multifractal parameters
should also be similar.

3. Materials and methods

Four plots of undisturbed soil under grass were sampled. The
plots were 200 cm � 40 cm with a slope of 4% along the longest
side. In each plot, 20 transects, 10 cm apart and parallel to the
shortest side were considered. The elevation was recorded with
1 cm increment along each transect with the help of a pinmeter
(Bryant et al., 2007). The effect of slope of the plots was removed to
obtain 4 matrices. They contained 20 columns (transects) and 40
Fig. 4. Singularity spectra of each microrelief with error bars for singularity exponents

circles. Lines represent simulations of two-dimensional tetranomial measures with we
rows (point elevations on each transect) for each plot. Fig. 2 depicts
a graph that represents the microrelief of one of these plots.

To study the multifractal behavior of the soil microrelief, point
elevation values were normalized and 4 probability measures, one
for each plot, were considered. The multifractal parameters were
estimated from Expressions (1) and (2) by linear regression using
different grids with rectangular cells of sizes which correspond to
successive reductions of the rectangular region of the plot by the
factors 2�k for k = 1, 2, 3, 4. The parameter q was chosen between
�4 and 4 in increments of 0.5; hence, we considered 17 possible
scalings. Coefficients of determination R2 of the fit of the linear
regression and standard errors SE of the estimation of the slope of
the regression line were recorded.

4. Results and discussion

The microtopography exhibited a well-defined scaling behavior
that represented the fully developed multifractal structure of the
soil surface roughness for the plots considered in this study. The
coefficients of determination of the fits of the singularity
exponents a(q) and the fractal dimensions f(a(q)) were all greater
than 0.97. Fig. 3 shows the regression lines for the determination of
the singularity exponents a and the fractals dimensions f(a) for
selected values of parameter q. They correspond to five of the
seventeen scalings estimated for sample A. Singularity spectra,
depicted in Fig. 4 had a noticeable concave shape with the same
pattern: they were asymmetric. This asymmetry was less intense
in cases B and D. This particular shape indicates that larger
a(q) and fractal dimensions f(a(q)). The estimated values are represented as open

ights from Table 1.



Table 1
Weights of the simulation of two-dimensional tetranomial measure for each

microrelief dataset.

Weights A B C D

p1 0.35 0.33 0.33 0.32

p2 0.23 0.26 0.25 0.27

p3 0.22 0.22 0.22 0.22

p4 0.2 0.19 0.2 0.19
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concentrations of the measure—i.e. small values of the singularity
exponent (Expressions (1) and (2)) corresponding to high point
elevation—were more diverse but less common than the smaller
concentrations. The left branch was also longer indicating that the
geometrical size of the set of points with the smallest exponents a
was smaller. At the right branch of the singularity spectrum, we
observed the opposite behavior. The highest exponents corre-
sponding to lowest concentrations of the measure were not so
diverse but they were more common. In terms of the roughness of
the studied soil microrelief, this suggested that the highest peaks
were ‘‘very’’ different from one another but that they were ‘‘rare’’
while the lowest depressions were ‘‘very’’ similar to each other and
‘‘more frequent’’. These unbalanced behaviors were less pro-
nounced in datasets B and D which had spectra closer to that of a
symmetric concave graph.

The singularity spectra obtained had shapes similar to the
spectra of multinomial measures. To support this point we
simulated two-dimensional multinomial measures over a unit
square with four weights. Iterated functions systems (Hutchinson,
1981; Peitgen et al., 1992) were used to generate self-similar
multifractal measures with a grid size corresponding to a dyadic
scaling down with a factor of 2�9 which corresponds to 9 iterations
of the process depicted in Fig. 1. Table 1 shows the weights that
Fig. 5. Multifractal spectra of the sampling of the synthetic tetranomial measure C consid

represent the estimated values of the multifractal spectra for the considered sampling d

evaluated with Expressions (4) and (5) and weights C from Table 1.
were selected for each soil microrelief by adjusting the multifractal
parameters estimated from experimental data to the correspond-
ing ones obtained from the tetranomial measures through
Expressions (4) and (5). Specifically, we needed to determine four
positive numbers, p1, p2, p3 and p4 which sum equals 1. Let amin and
amax are the extreme values estimated for the singularity
exponents of a particular experimental measure, then, Expression
(8) implies that amin � �log2p4 and amax � �log2p1, when p4 is the
greatest weight and p1 is the smallest. Therefore, this provides
approximated values for p1 and p4. Taking into account that the
sum of the four weights is one; only one more condition is needed
to determine them. We use Expression (7) to gain an approximated
value of a(0); this is the singularity exponent where the maximum
of the spectrum is attained. In this way, it was possible to obtain a
synthetic soil roughness with a multifractal structure similar to the
microtopography of the plots that were studied. Fig. 3 depicts with
solid lines the singularity spectra of the tetranomial measures
considered for each soil surface microrelief together with
experimental spectra and error bars for the singularity exponents
a and the fractal dimensions f(a).

To examine the impact of the sampling density on the estimates
of multifractal parameters, we used tetranomial measures to carry
out a numerical experiment. The synthetic measure was generated
by iterating nine times the process depicted in Fig. 1. In this way we
obtained a matrix with measures of the cells of a grid with
512 � 512 cells. This probabilistic measure was viewed as the
associated probability measure of a soil microrelief where point
elevation values were obtained from points that were 1 cm apart
over transects 1 cm apart. This dataset played the role of the full
population that was resampled as follows.

Six different squares with 256 � 256 points were chosen
randomly. These were considered to be six random samples of
ering 256 (C0), 128 (C1), 64 (C2) and 32 (C3) transects with error bars. Open circles

ensities using Expressions (1) and (2). Lines represent the spectrum of the measure



Fig. 6. Variation of the variance with sampling intensity: 256 (1), 128 (2), 64 (4) and

32 (8) transects referred to the ratio of sampling density.
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the microtopography. The multifractal spectra of these samples
were estimated and compared with the multifractal spectra of the
original 512 � 512 measure obtained by using Expressions (4) and
(5). The columns of the 256 � 256 matrix associated with each
sample were considered as transects. Removing columns from
each sample, we obtained a series of samples with an increasing
distance between transects and less intense sampling. Then we
studied four sampling densities. First we removed each second
column and obtained a sample with 128 columns. By performing
the same operation with this sample, we obtained another one
with 64 columns. Then, we obtained six series with four samples,
each containing 256, 128, 64 and 32 columns, respectively. Fig. 5
depicts multifractal spectra of one of these series and the spectrum
of the original 512 � 512 measure evaluated with Expressions (4)
and (5). Two observations can be made from this. Firstly, the
central part of the spectra remained mostly unchanged, and
secondly, substantial variations were observed on the tails of the
spectra. Therefore, multifractal parameters corresponding to
values of parameter q close to zero were robust while those
further separated from the center showed more uncertainty. As a
consequence, results from the multifractal analysis based on
multifractal parameters corresponding to the central part of the
spectrum, such as the entropy dimension will be accurate enough
with a sampling density similar to the last sample of the series; the
one with 32 columns. To obtain the tails of the singularity
spectrum, which correspond to extreme values of singularity
exponents a or fractal dimensions f(a), the sampling density will
be required to be closer to the first sample of the series where
transects are 1 cm apart.

We also studied the behavior of the entropy dimension with the
sampling density, and we recorded the variance for four sampling
densities for the six different 256 � 256 samples randomly chosen
on the original 512 � 512 measure. As depicted in Fig. 5, the
variance of the entropy dimensions grows with the distance
between transects and eventually stabilizes. In Fig. 6 the distance
between transects was represented as the ratio of the distance
between two adjacent transects to the distance of two consecutive
sampling points within transects. In this way we got a non-
dimensional measure of transects distance or sampling density.
These results suggest that the spatial variability of the entropy
dimension found from transect measurements is scale-dependent
with scale expressed as the distance between transects. Therefore,
if one needs to evaluate the significance between the average
entropy dimension values found for different surface or vegetation
conditions, then, to apply the t-test, the average entropy
dimensions and their standard errors have to be, in general,
determined at the same scale in terms of the distance between
transects. However, if the distances between transects are so large
that the scale dependence of the variance does not manifest itself
anymore, no scale match in terms of the distances between
transects is necessary for statistical comparisons.

5. Conclusions

The roughness of four soil plots microrelief exhibited a well-
defined multifractal behavior. Multinomial measures with four
weights were generated to simulated soil microrelief. The weights
were selected to obtain a good agreement between both, the
spectrum of the experimental measure and the spectrum of the
tetranomial multifractal. These synthetic multifractals were used
to evaluate the uncertainty in the estimates of the multifractal
spectrum of natural roughness as a consequence of the distance
between two consecutive transects. We found that the distance
between transects used to collect the experimental data in this
work generates a realistic multifractal spectrum but it cannot
define the spectrum tails precisely. At the same time, comparisons
of entropy dimensions appear to be possible when the change in
the variance with the distance between transects are taken into
account. The asymptotic value of the variance can be used in the
statistical comparisons of the estimates of the entropy dimensions
of roughness obtained in transect sampling if the distance between
transects warrants the use of this asymptotic variance value.

Acknowledgments

F.J. Caniego, M. Reyes and F. San José Martı́nez would like to
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